SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Arner Anders) ;pers:(Arner Anders);lar1:(uu)"

Sökning: WFRF:(Arner Anders) > Arner Anders > Uppsala universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bamberg, Krister, et al. (författare)
  • Electrolyte handling in the isolated perfused rat kidney : demonstration of vasopressin V2-receptor-dependent calcium reabsorption
  • 2020
  • Ingår i: Upsala Journal of Medical Sciences. - : TAYLOR & FRANCIS LTD. - 0300-9734 .- 2000-1967. ; 125:4, s. 274-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The most profound effect of vasopressin on the kidney is to increase water reabsorption through V-2-receptor (V2R) stimulation, but there are also data suggesting effects on calcium transport. To address this issue, we have established an isolated perfused kidney model with accurate pressure control, to directly study the effects of V2R stimulation on kidney function, isolated from systemic effects. Methods The role of V2R in renal calcium handling was studied in isolated rat kidneys using a new pressure control system that uses a calibration curve to compensate for the internal pressure drop up to the tip of the perfusion cannula. Results Kidneys subjected to V2R stimulation using desmopressin (DDAVP) displayed stable osmolality and calcium reabsorption throughout the experiment, whereas kidneys not administered DDAVP exhibited a simultaneous fall in urine osmolality and calcium reabsorption. Epithelial sodium channel (ENaC) inhibition using amiloride resulted in a marked increase in potassium reabsorption along with decreased sodium reabsorption. Conclusions A stable isolated perfused kidney model with computer-controlled pressure regulation was developed, which retained key physiological functions. The preparation responds to pharmacological inhibition of ENaC channels and activation of V2R. Using the model, the dynamic effects of V2R stimulation on calcium handling and urine osmolality could be visualised. The study thereby provides evidence for a stimulatory role of V2R in renal calcium reabsorption.
  •  
2.
  • Lindqvist, Johan, 1985- (författare)
  • Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Congenital myopathies are a rare and heterogeneous group of diseases. They are primarily characterised by skeletal muscle weakness and disease-specific pathological features. They harshly limit ordinary life and in severe cases, these myopathies are associated with early death of the affected individuals. The congenital myopathies investigated in this thesis are nemaline myopathy and myofibrillar myopathy. These diseases are usually caused by missense mutations in genes encoding myofibrillar proteins, but the exact mechanisms by which the point mutations in these proteins cause the overall weakness remain mysterious. Hence, in this thesis two different nemaline myopathy-causing actin mutations and one myofibrillar myopathy-causing myosin-mutation found in both human patients and mouse models were used to investigate the cascades of molecular and cellular events leading to weakness.I performed a broad range of functional and structural experiments including skinned muscle fibre mechanics, small-angle X-ray scattering as well as immunoblotting and histochemical techniques. Interestingly, according to my results, point mutations in myosin and actin differently modify myosin binding to actin, cross-bridge formation and muscle fibre force production revealing divergent mechanisms, that is, gain versus loss of function (papers I, II and IV). In addition, one point mutation in actin appears to have muscle-specific effects.  The presence of that mutant protein in respiratory muscles, i.e. diaphragm, has indeed more damaging consequences on myofibrillar structure than in limb muscles complexifying the pathophysiological mechanisms (paper II).As numerous atrophic muscle fibres can be seen in congenital myopathies, I also considered this phenomenon as a contributing factor to weakness and characterised the underlying causes in presence of one actin mutation. My results highlighted a direct muscle-specific up-regulation of the ubiquitin-proteasome system (paper III).All together, my research work demonstrates that mutation- and muscle-specific mechanisms trigger the muscle weakness in congenital myopathies. This gives important insights into the pathophysiology of congenital myopathies and will undoubtedly help in designing future therapies.
  •  
3.
  • van Wieringen, Tijs, 1979- (författare)
  • Intra- and Extracellular Modulation of Integrin-directed Connective Tissue Cell Contraction
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • All blood vessels in the microvasculature are embedded in loose connective tissue, which regulates the transport of fluid to and from tissues. The intersti-tial fluid pressure (IFP) is one of the forces that control this transport. A lowering of IFP in vivo results in an increased transport of fluid from the circulation into the underhydrated connective tissues, resulting in edema formation. During homeostasis, contractile connective tissue cells exert a tension on the connective tissue fibrous network by binding with β1 in-tegrins, thereby actively controlling IFP. During inflammation, the IFP is lowered but platelet-derived growth factor (PDGF)-BB induces an IFP nor-malization dependent on integrin αVβ3. We demonstrate that extracellular proteins from Streptococcus equi subspecies equi modulated cell-mediated and integrin αVβ3-directed collagen gel contraction in vitro. One of these proteins, the collagen- and fibronectin binding FNE, stimulated contraction by a process dependent on fibronectin synthesis. This study identified a pos-sible novel virulence mechanism for bacteria based on the ability of bacteria to modulate the edema response. Another protein, the collagen-binding pro-tein CNE, inhibited contraction and this led to the identification of sites in collagen monomers that potentially are involved in connecting αVβ3 to the collagen network. PDGF-BB and prostaglandin E1 (PGE1) stimulate and inhibit collagen gel contraction in vitro and normalize and lower IFP, respec-tively. We showed that these agents affected both similar and different sets of actin-binding proteins. PDGF-BB stimulated actin cytoskeleton dynamics whereas PGE1 inhibited processes dependent on cytoskeletal motor and adhesive functions, suggesting that these different activities may partly ex-plain the contrasting effects of PGE1 and PDGF-BB on contraction and IFP. Mutation of the phosphatidylinositol 3’-kinase (PI3K), but not phospholipase C (PLC)γ activation site, rendered cells unable to respond to PDGF-BB in contraction and in activation of the actin binding and severing protein cofilin. Ability to activate cofilin after PDGF-BB stimulation correlated with ability to respond to PDGF-BB in contraction, suggesting a role for cofilin in this process downstream of PDGF receptor-activated PI3K. Many proteins can modulate contraction either by affecting the extracellular matrix and cell adhesions or by altering cytoskeletal dynamics. Knowledge on how these proteins might influence IFP is likely to be of clinical importance for treat-ment of inflammatory conditions including anaphylaxis, septic shock and also carcinoma growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy